Monochromatic cycle covers in random graphs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monochromatic tree covers and Ramsey numbers for set-coloured graphs

We extend results on monochromatic tree covers and from classical Ramsey theory to a generalised setting, where each of the edges of an underlying host graph (here, either a complete graph or a complete bipartite graph), is coloured with a set of colours. Our results for tree covers in this setting have an application to Ryser’s Conjecture. Every r-partite r-uniform hypergraph whose edges pairw...

متن کامل

Monochromatic cycle partitions of edge-colored graphs

In this article we study the monochromatic cycle partition problem for non-complete graphs. We consider graphs with a given independence number (G)= . Generalizing a classical conjecture of Erd” os, Gyárfás and Pyber, we conjecture that if we r -color the edges of a graph G with (G)= , then the vertex set of G can be partitioned into at most r vertex disjoint monochromatic cycles. In the direct...

متن کامل

Partitioning Random Graphs into Monochromatic Components

Erdős, Gyárfás, and Pyber (1991) conjectured that every r-colored complete graph can be partitioned into at most r − 1 monochromatic components; this is a strengthening of a conjecture of Lovász (1975) and Ryser (1970) in which the components are only required to form a cover. An important partial result of Haxell and Kohayakawa (1995) shows that a partition into r monochromatic components is p...

متن کامل

6-cycle Double Covers of Cubic Graphs

A cycle double cover (CDC) of an undirected graph is a collection of the graph’s cycles such that every edge of the graph belongs to exactly two cycles. We describe a constructive method for generating all the cubic graphs that have a 6-CDC (a CDC in which every cycle has length 6). As an application of the method, we prove that all such graphs have a Hamiltonian cycle. A sense of direction is ...

متن کامل

Random Walks on Directed Covers of Graphs

Directed covers of finite graphs are also known as periodic trees or trees with finitely many cone types. We expand the existing theory of directed covers of finite graphs to those of infinite graphs. While the lower growth rate still equals the branching number, upper and lower growth rates do not longer coincide in general. Furthermore, the behaviour of random walks on directed covers of infi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Random Structures & Algorithms

سال: 2018

ISSN: 1042-9832

DOI: 10.1002/rsa.20819